Calculus II	Name:
Study Guide 22	Class:
Due Date:	Score:

$\label{eq:No-Work} \mbox{No Work} \Leftrightarrow \mbox{No Points}$ Use Pencil Only $\Leftrightarrow \mbox{Be Neat \& Organized}$

- 1. (3 points) Given the curve $x=t^2-1, y=t^3+t$ for $-2\leq t\leq 2$, find its initial and terminal points.
- 2. (4 points) Given the curve $x=t^2-1, y=t^3+t$, find its $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

3. (4 points) Discuss increasing, decreasing, and concavity of the curve $x=t^2-1, y=t^3+t$.

3. _____

4. (4 points) Consider the curve given by $x = 3e^{-2t} - 1$, $y = e^{-t}$ for $t \ge 0$, eliminate the parameter then graph the curve.

4. _____

5. (4 points) Consider the curve given by $x = \sin^2 t$, $y = 1 + \cos t$, eliminate the parameter then graph the curve.

5.

6. (5 points) Given the curve $x = \sec t$, $y = \tan t$, evaluate its $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $t = \pi/3$.

7. (4 points) Find the arc length of the curve
$$x = \frac{1}{3}t^3, y = \frac{1}{2}t^2$$
 for $0 \le t \le 1$.

8. (6 points) Find the arc length of the curve $x = e^t \cos t$, $y = e^t \sin t$ for $0 \le t \le \pi/2$.

9. (4 points) Find the slope of the tangent line to the curve $x=e^t, y=e^{-t}$ at the point where t=2.

10. (6 points) Find the area of the surface generated by revolving the curve $x=t^2,y=2t$ for $0\leq t\leq 4$ about x-axis.

10.

11. (6 points) Find the area of the surface generated by revolving the curve $x=\cos^2 t,y=\sin^2 t$ for $0\leq t\leq \pi/2$ about y-axis.

1. _____